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John L. Greenberg studied Alexis Fontaine’s mathematics, but no one has studied his mechanics
except for Montucla’s mention in the following comment. In the third volume of Hisoire des
mathématiques published in 1802, Montucla declared that Fontaine had given d’ Alembert’s principle
in 1739. It seems that his declaration points to Fontaine’s memoir entitled “Principes de I’art de
résoudre les problémes sur le mouvement des corps”.!

For this reason, we will select this memoir to understand Fontaine’s mechanics, point out some
of the special features in his mechanics and finally compare his mechanics with d’ Alembert’s.

Fontaine’s mechanics consists of 5 parts. In the first part, he explains fundamental concepts such
as matter, force, motion, and so on.” He then discusses the motion of material points under the
influence of a central force in the second part’, the collision of bodies in the third part’, and the

motion of extended bodies in the fourth part.” Lastly, he discusses the motion of a center of gravity. 6

We will begin by examining Fontaine’s memoir starting with the first part. First of all, he
admits the existence of the vacuum and that any body will contain a vacuum in it. If a body does not
contain a vacuum in it, it becomes perfectly hard. Therefore, in the discussion that follows the first
part, he supposes that a body is perfectly hard, and then he discusses an elastic body with some
additional conditions.

Next, with regards to force, he states: “Nous nommerons cette force impulsion, & nous
concevrons qu’elle agit par un seul coup qu’elle frappe.” Consequently, this force does not act
continuously, but as an impulse without duration. His belief in the existence of a perfectly hard body
or that force is impulses coincide with the notions held by d’ Alembert.

As for inertia, Fontaine writes his peculiar opinion. According to him, a body has a force to
maintain the status quo and this force is proportional to the mass of the body. He names this force
“inertia.” Consequently, inertia signifies force. This idea is common among contemporary scholars.
However, he explains inertia as follows. “La force de ce corps...pour n’y étre pas en ’état le plus
prochain de celui ou il y est, est comme sa masse.” Therefore, a body at rest has a force, to say
nothing of a body in motion. “La force d’un corps en repos pour ne pas se mouvoir avec une vitesse
donnée, est pareillement comme sa masse & comme cette vitesse, & la direction de cette force est en
sens contraire 4 la vitesse.” Accepting his declaration, it seems that a body at rest has a force of
varied magnitude.

Furthermore, when the motion of the body has changed, he writes as follows (see Fig.1).

Que la force A.CD qu’a au lieu A dans la direction Ag, le corps A qui se meut dans la direction BC

(39)
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Fig.1

- D
avec une vitesse AC pour ne pas se mouvoir dans la direction AD avec une vitesse AD, soit vaincue
subitement par une impulsion égal & oppsée, & le corps A se mouvera dans la direction AD avec une
vitesse AD.

From our point of view, when a force (F) acts on a body, the body begins to move with
acceleration () inversely proportional to a mass (m) i.e. a=F/m. Or using the concepts of those days,
the body begins to move with velocity (v) inversely proportional to a mass (i.e. v=F/m) during an
infinitely small time dr. Namely, when a force acts on a body, the body resists the external force by
its mass, not by the product of its mass and velocity. This difference comes from the difference
between the concepts of force of inertia and that of inertia. In addition, from our point of view, a
bigger body can move slowly by a smaller force. We must examine in detail Fontaine’s declaration
that a body begins to move suddenly with a velocity AD.

We must add one more remark to his statement. He writes that when a body is in any motion (A),
it has a force X not to be in another motion (B) (pour n’étre pas a une distance v [here, v= angular
velocity] de son état). We can interpret that an external force X can change the motion (A) to another
motion (B). Fontaine himselt states that we can rewrite the former declaration into the latter.
Consequently, we will use the latter expression, though he always uses the former. However

Fontaine’s curious expression deserves detailed examination from a philosophical perspective.

Let us now examine the second part. He discusses the motion of material points under the
influence of a central force. Here, we must treat an attraction, which acts continuously. However,
since Fontaine regards any force as an impulse acting instantaneously, he must explain an attraction
by impulse. We will examine his explanation.

When the velocity of a body (M: mass) changes from ¥ to V+v, he interprets that a force in the
body was surmounted by an external impulse Mv and this impulse acts instantaneously. Next, he

replaces the impulse with ‘la force motrice” as follows. “..., I’on peut supposer une cause ou force
p .
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motrice, telle qu’il faudroit, pour vaincre la force Mv, autant de coups de cette force motrice qu’il'y a
d’instans dans un temps ¢.” He expresses ‘la force motrice’ by p. ‘La force motrice’ does not have

duration and acts at the beginning of each infinitely small duration dr. Therefore, we obtain the next
relation (Fig.2)

Fig.2
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Consequently, force expresses Mv and p=Mv/t, which each belong to different categories. In addition,
since expressing ‘la force motrice’ per unit mass, p/M=v/t signifies “le coup frappé sur chaque point
de matiére de ce corps” and he names it ‘force accélératrice’.

Furthermore, when discussing the relation between vis viva and ‘la force motrice’, he gives the
relation f=Mdv/dt for expressing ‘la force motrice’ (f) acting instantaneously. However, we must
interpret this relation as differentiating the relation Mv= p-, not as the second law of motion.

After interpreting the concept of a force acting continuously as a series of impulses, he discusses
the motion of material points under the influence of a central force. First, he supposes that a body
moving uniformly describes a curve by receiving a series of impulses obliquely and gives the
magnitude of the impulse or ‘la force motrice’. Next, he supposes that the body starts from point A
and describes curve Ppr. Notations x, y, s, dx, dy, ds are determined as in Fig.3. V signifies the
angular velocity of radius FP around point F and v signifies the velocity of P along the direction FP
and Py expresses a component of ‘la force motrice’ along direction F.

Fig.3

(41)
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He determines V" and ds/dt, which expresses the velocity at point P as follows. During the first
infinitesimal time, the body proceeds from point P to point p. During the second infinitesimal time,
it continues to proceed along direction Pp to point / with “la vitesse avec laquelle il vient de
parcourir la petit c6té Pp.” Furthermore, the body has a little velocity to point F by “la force motrice’.
Consequently, while proceeding from point p to point /, the body proceeds from point p to point m to
point F. Then, in reality, it proceeds from point p to point z, which is the diagonal of parallelogram
plrm. Therefore, he solves the problem by using the so-called d’ Alembert’s principle.

When solving the problem, he uses the relation ds:pl=dx/V:dx"/V" or ds: (pl-ds)=dx/V:d(dx/V).
Since V' is the angular velocity around point F and dx is an infinitely small rotational angle around
point F, we obtain the relation dx/V=dr. The first infinitesimal time dx/V is not equal to the second
infinitesimal time dx'/V", because d(dx/V)#0. The opinion that each infinitesimal time is not equal is
strange for those days.

Although we omit calculation, he demonstrates that the body describes an ellipse, of which one
of the foci is point /" and the areal velocity is constant. In addition, he discusses a two-body problem
under the influence of a central force. Further study is necessary in order to situate in a historical

context Fontaine’s analyzation of the problems proposed by Newton in Principia.®

We will examine the third part, discussing collision of bodies. First, he supposes that bodies are
perfectly hard and based on hard body collisions, he treats elastic body collision by adding the
interaction between bodies. Here, we will treat only hard body collisions.

He regards collision as equilibrium, because bodies are perfectly hard. He writes “Les
changemens qui leur [des corps qui choquent] arriveront seront tels que les forces qu’avoient ces
corps pour s’y refuser, se seront vaincues mutuellement ou auront été en équilibre.” A body A
collides with another body B from behind. The bodies 4 and B have velocities a and b, respectively
before collision. And since a force 4o is surmounted by a force B ¢, he obtains the relation 4 o +B

 =0. He writes “la force 4a du corps 4 dont la vitesse est = a, pour que sa vitesse ne soit pas = a +
a, ne sera vaincue que par la force B qu’a le corps B, dont la vitesse est = b. Pour que sa vitesse ne
soit pas = b + {, on aura donc Aa + B = 0.” These sentences are difficult to understand, but as stated
above, we can interpret that after collision, the bodies 4 and B have velocities a+o and b + ¢ In
addition, since two bodies proceed together, due to their hardness, he obtains the relation a+ a=b+ .
From these relations, he gives the results a=-B(a-b)/(A+B) and ¢ =A(a-b)/(A+B). Finally the
velocity of two bodies after collision is (Aa+Bb)/(A+B).

We can compare his method with d’Alembert’s. According to the article ‘Percussion’ in
['Encyclopédie, he supposes that a head-on collision occurs between two bodies M and m with
velocities 4 and a, respectively. Afier collision, bodies M and m have velocities " and v, respectively.

He regards that velocity 4 consists of V" and 4-V and that velocity a consists of v and a-v. He then

i
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sets the following two conditions.
1° “Les vitesses ¥, v, qui sont celles que les corps gardent, doivent étre telles qu'elles ne se nuisent
point I'une & l'autre ; donc elles doivent étre égales & en méme sens, donc V' = v™.
2° “11 faut que les vitesses 4 - ¥, a - v se détruisent mutuellement”. Namely, the product of velocity
A-V and mass M must be equal to the product of velocity a-v (or if considering the direction of body
m after collision, a+v) and mass m. Therefore, he gives the relation MA-MV=ma+mV.

From these conditions, he gives the result V=(MA-ma)/(M+a).

The second condition, in which d’Alembert uses the d’Alembert’s principle, corresponds to
Fontaine’s equation Ao + B = 0.

After giving a law of elastic collision, Fontaine treats the next problem (Fig.4), in which a

Fig.4

|
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sphere A collides with four hard spheres B, B, C, C’ simultaneously. This problem is the same as the
one d’Alembert treats in his Traité de dynamique’ and Opuscules mathématiques.'’ They each
realized that their rival discussed the same problem and mentioned each other’s results. However,

given the scope of this paper, we cannot make a close examination of this problem at this point.

Finally, let us now examine the fourth part, in which Fontaine treats motion of extended bodies.
Here, he proposes nine problems, but we cannot examine all of them. We will examine only two
problems in detail. Before solving problems, he introduces two types of forces without
demonstration.

1. A weightless space has a material point 4, whose distance from an axis is a. The space has a force
“pour présérver son état, ou pour n’étre pas en I’état le plus prochain de celui ou il est”. The force is
proportional to the product of the inertia of the material point 4 (mass) and the distance from the axis
a,ie. Aa.

2. When rotating around the axis with an angular velocity V, the space has a force “pour que sa
vitesse angulaire ne soit pas ¥'+v”. The force is proportional to the product of the force of the space
(inertia), the distance from the axis and v, i.e. Ad'v.

Next, when the space has many material points 4, B, C, D, etc., whose distance from the axis are

(43)



THE JOURNAL OF SENRI KINRAN UNIVERSITY

a, b, c, d, etc., respectively. He then chooses one point M, which represents many material points in
the next two relations. Here, m is the distance from the axis to point M.
Mm = Aa + Bb+ Cc + Dd + etc. ...(4-1)
Mm*v = Aa’v+ Bb*v+ Cc*v+ Dd*v + etc. ..(4-2)
From these relations, he gives the following relations.
v~ (Aa+Bb+Cc+Dd + etc.)’
Aa® +Bb® + Cc* + Dd* + etc.
Aa® + Bb* + Cc” + Dd* + efc.
"= Aa+ Bb+ Cc+Dd +etc.

Before discussing the physical meanings of M and m, we will examine how he solves a problem by

using these quantities.
Let us first examine a problem proposed in Art.XII (Fig.5). A weightless body, which has two
Fig.5

e

material points 4 and B, can rotate around an axis O. He tries to determine a point N, i.e. to

determine ON=n and 740G=v. We will discuss the physical meaning of point N later. He puts
OA~a, OB=b, nAOB=a and the angular velocity of AOB=V. He assumes that to increase the angular
velocity as much as v, we must give a force Aav at point 4 along direction Aa and perpendicular to
direction OA4 and a force Bbv at point B along direction B¢ and perpendicular to direction OB.

To compose these two forces, he sets segments ed and eB, which satisty the ratios ed-eB=Bb:Aa.
Next he obtains ev by composing a parallelogram and by considering geometrical relations, he

obtains the magnitude of ev. As a result, the resultant force along direction ev is

VA a® + 24aBbcosa + Bb: -v.

Next, he drops a perpendicular ON=n from the point O to the segment ev and supposes that Nn

satisfies the following relation
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Nn=+A’a"* +24aBbcosa + B*b* .
From the geometrical relations (not, from the equations (4-1) and (4-2)), he gives the magnitude of
quantity » as
Aa’® + Bb*
NA*a® +2A4aBbcosa + B’b’

Finally, he obtains N,
A*a® +2A4aBbcosa + B*b*
Aa® + Bb’ '

He names point N “le centre de force de I’espace AOB par rapport a ’axe 0.”

Fontaine does not actually state this, but n justly signifies a length of equivalent simple
pendulum with respect to axis O and point N expresses center of oscillation. He only refers to point
N as ‘le centre de force.” We can understand his nomenclature by considering d’ Alembert’s method',
by which he solves essentially the same problem.

According to d’Alembert, we can regard acting force VM as an impulse acting at the beginning
of an infinitesimal time d (Fig.6). Since the velocity of point ¥ increase dv by a force VM, we can

Fig.6

write Fyy=V-dvy=V-CV-dw, here w is angular velocity and F signifies force. Since we can write Fyp
= FuHVQ/CV = V-VQ-dw, we obtain the relation Fo, = [Fyp = [V'VQ-dw = dolVVQ =
dw-CG-MRC = (CG-dw)-MRC = dvg-MRC = ¢-MRC, here MRC is the mass of the body. Since the
resultant force F; acts on a point K, ‘le moment de la force ¢-MRC” is ¢-MRC-CK.

Le moment de la force is the summation of elementary moment of force resulting from each
point of the body and the summation gives [V-(p-VC/CG)-VC, here ¢-VC/CG expresses the
acceleration of point ¥ by using that of the center of gravity. Therefore, we obtain the relation

@-MRC-CK=[V-(p-VC/CG)-VC.

(45)
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Here, CK signifies a length of equivalent simple pendulum with respect to axis C, but he does not
refer to this fact either.

By comparing their methods, we can understand easily that point N in Fontaine’s method
corresponds to point K in d’Alembert’s method and forces Aa and Bb in the former case corresponds
to force VP in the latter case. Furthermore, force VN will vanish when we integrate it over the whole
body. The only difference is that Fontaine considers a two material points system, while d’ Alembert
considers an extended body. Consequently, d’Alembert determines point K so as to represent a
summation of elementary ‘moment de la force’ at each point of the body, whereas from Fontaine’s
point of view, point K can be regarded as ‘le centre de force.’ Here, Fontaine’s force corresponds to
d’Alembert’s moment of force."* Such a complicated nomenclature was not unusual in those days.

According to Maltese, in the first half of the 18" century, scholars tried to determine special
points in an extended body to explain its motion by mechanics for a system of material points."” For
example, he cites centrum oscillationis, centrum spontaneum rotationis"*, centrum virium.”> We can
regard Fontaine’s ‘le centre de force’ as one of the examples.

We will now examine quantities M and m, as defined in equations (4-1) and (4-2). For the sake
of simplicity, we will consider them in a system of two material points (see Fig.7). Fontaine names

Fig.7

point M as ‘le centre d’inertie M par rapport a I’axe O’. At the same time, he names the center of
gravity G as ‘le centre de force G de I’espace 4OB par rapport a un axe infiniment distant.’

From the equations (4-1) and (4-2), we can understand that point m is on a circle, whose center
is O and the radius is (4a’ +Bb3)/(Aa+Bb), but cannot determine its position uniquely. However,
Fontaine states that “le centre d’inertie M...est dans la ligne OG” and we are able to confirm this
declaration by Fig.5. Furthermore, from his composition of forces acting on points 4 and B in his

problem solved above, we can easily understand that quantity # signifies the distance from axis O to

_—

a vector, which is composed by Aa (whose origin is the point 4 and perpendicular to OA4) and

Bb (which is perpendicular to OB, and whose origin is point B). In addition, # satisfies the relation
Nm'v=Aa’v+Bb’v but not Nn=Aa+Bb. Line ON passes through point G and M and
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OM=m=(Aa’+Bb’)/(Aa+Bb). We can understand that point N is a center of oscillation, but what is
the physical meaning of point M?

By multiplying the relation Mm=Aa+Bb by v (angular velocity), we obtain Mmv=Aav+Bbv and
this relation signifies that the momentum of point M represents the momentums of points 4 and B.
However, from our point of view, although momentum is a vector quantity, Fontaine gives its
relation as a scalar quantity. This confusion makes the physical meaning of M or m obscure. His
relations have physical meaning only when points O, 4, and B are on the same line. As a result, he
uses the quantities N and # (as long as Nn’ expresses the moment of inertia), but not the quantities M
and m in solving problems.

In contrast, d’Alembert decomposes the force acting on point ¥ (from our point of view,
momentum) into two perpendicular directions; one along direction CG, the other along the direction
perpendicular to CG. Next, he demonstrates that the resultant force along the direction CG is equal
to zero and only the resultant force along the direction perpendicular to direction CG must be
considered. In d’Alembert’s resolution, the quantities m and n, which are introduced by Fontaine,
coincide and point M becomes the special point on a body called the center of oscillation. Fontaine
did not understand the fact that momentum is a quantity with a direction.

We will examine the next problem Art.XVI (Fig.8). D’ Alembert tries to determine the motion of

Fig.8

a weightless body AOB, which has two material points 4 and B, when it is rotated in a vertical plane
around a point O under the influence of gravity. He supposes that point 4 is accelerated by ‘la force’
cos x around axis O if point 4 were to exist alone. ‘La force’ means the acceleration of point 4
around axis O by setting gravitational acceleration = 1. 16

Next, he puts ‘la force’ that accelerates line OA as cos x/a. This force is equivalent to the
acceleration of a point on line O4 around axis O, whose distance from point O is a unit length.
Putting the acceleration as a, we obtain the relation adt=dv (v: rotational velocity). Since v=w (®:
angular velocity) in this case, we obtain dv=dw. Therefore, we finally obtain adf=dw. Namely, at the
beginning of an infinitesimal time d, an impulse acts on the body to increase by an infinitesimal

angular velocity dw and the velocity of point 4 increases by a-dw=d(aw). '" The situation is the

(47)
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same for body B. If it were to exist alone, body B is accelerated around axis O by ‘la force’ cos (a+x)
and line OB is accelerated by ‘la force’ cos (a+x)/b.

However, in reality, since points 4 and B are fixed on the body, he supposes that line OA is
accelerated by ‘la force’ cos x/a+e and line OB is accelerated by ‘la force’ cos (a+x)/b+f.
Consequently, by putting ‘la force” accelerating body 4OB as ¢, we obtain the next relation

o= cos x/a+e= cos (a+x)/b+f.

When ‘la force’ of O4 (from our point of view, angular acceleration) changes by e, ‘la force’ of
04 (angular momentum) changes by Aa’e (...la force de OA, pour n’étre pas a une distance e de son
état, est = Aa’e...). And when ‘la force’ of OB (from our point of view, angular acceleration) changes
by f, ‘la force’ of OB (angular momentum) changes by Bb’f. Since these two forces are in
equilibrium (Ces deux forces se vaincront mutuellement, ou seront en équilibre), we obtain the
following relation

Ad’e+ Bbf=0.
By eliminating e and f from these three equations, we obtain
_ Aacosx+ Bbcosa-cosx— Bbsina -sinx
- Aa’ + Bb* '

Since ‘la force’ to accelerate point P around axis O is cos (r+x), ‘la force’ to accelerate line OP

around axis O is cos (r+x)/p, here OP=p and 74OP=r. Consequently, we obtain
= cos (m+x)/p.
Therefore, we obtain
cosz-cosx—sinz-sinx Aacosx+ Bbcosa-cosx — Bbsina -sinx
p - Aa’® + Bb’ '

By considering that p and 7 are invariable and x is variable, we can take the differential of the

equation above with respect to x. From the equation obtained and the equation above, we finally

accede to

3 Aa” + Bb"
JAa? +24aBbcosa + B2b°

P

Fontaine refers to point P as follows. “Le point P se nomme le centre d’oscillation de ’espace 4OB,
& I’on voit qu’il est le méme que le centre de force N de ce méme espace.”

19 20
, Euler™ and

Similar problems were solved by Jacob Bernoulli'®, Johann Bernoulli
d’Alembert™'. Christiane Vilain examines their solutions in detail. > Here, we will compare
Fontaine’s solution with d’Alembert’s.

To determine the velocity of a weightless bar CR, which has material points at points 4, B and R,
d’Alembert tries to determine a segment RS (Fig.9). When the bar is on CR, ‘vitesses' = RT, BQ

and 4O are given on each material point. However, in reality, being fixed on the bar, each material

(o
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Fig.9

O

point proceeds to RS, BG and AM. He regards the given velocities RT, BQ and AQO as consisting of
AM,-MO; BG-GQ; RS,ST, respectively. Since ‘le levier CAR seroit demeuré en repos, si les corps R,
B, A n’avoient re¢l que les mouvenens ST, -GQ, -MO’ from d’Alembert’s principle, he gives the
next relation

A.MO.AC+B.GQ.BC=R.ST.CR.
By putting 40=a, BQ=b, RT=c, CA=y, CB=r, CR=p, RS=z, he gives the value of z as follows

L Aap + Bbrp + Rep’
Ay> +Bri +Rp*

In the corollary I, he puts F, f and ¢ as ‘les forces motrices’ of material points 4, B and C,
respectively and replaces a, b and ¢ by F/4, /B and ¢/R, respectively.” Finally, he gives ‘la force
accélératrice’ of the material point R as follows

Fy+ fr+op
Ay® + Br’ + sz

X

Fy+ fr+@p
Ay® +Br’ + Rp’

Here, expresses the angular acceleration of the bar.

When a bar is rotating around axis C under the influence of gravity, as in Fontaine’s case,

Fy+ fr+op

> ~ — coincides with Fontaine’s result for ¢ by setting a=0. * For in this case,
Ay~ +Br  +Rp-

F/A=f/B=¢/R are equal to a component of gravitational acceleration perpendicular to the bar CR
(=cos x).
Therefore, both methods are the same, in the sense that they determine the motion of an

extended body by balancing the angular momentum gained and the angular momentum Jost.*

(49)
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Finally, we will quickly introduce two problems, which Fontaine and d’Alembert solve
separately. The first problem is also treated by Euler”’, Daniel Bernoulli’®, d’Alembert”. The second
problem is treated only by d’Alembert.”’ The former discusses collision between a material point
and a non-fixed extended body (Fig.10) and the latter discusses collision of two extended bodies

Fig.10

D’ Alembert Fontaine

fixed around different axes (Fig.11). Since the solutions by d’Alembert are discussed in detail by

Fig.11

D’Alembert Fontaine

Jérome Viard®', we will not explain his methods any more.

Here, we will only point out what d’Alembert wrote in his solution. This will explain Fontaine’s
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equation (4-2).

“Mais dans une Sphére qui tourne autour d’un point fixe, la quantité de mouvement & la force ne
sont pas la méme chose : il faut avoir égard de plus au bras de levier par lequel chaque particule
agit ; c’est la somme des produits de chaque élément par sa vitesse & par sa distance au point fixe,
qui fait la force, & non pas seulement la somme des produites de chaque élément par sa vitesse.”

(* This article is based on the presentation at the colloquium "Fontaine" (Manifestation soutenue par
le GDR D'Alembert (CNRS), 'Université Lyon 1, les Amis de Cuisel, et parrainée par I'Académie
des Sciences de Paris) held in September 2004.)
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