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§1. Introduction.

One of the most attractive problems in 1740s was a motion of a rotating tube around a fixed
point and that of a small body included in it. Representative mechanicians in those days, such as
Daniel Bernoulli, Alexis-Claude Clairaut, Leonhard Euler and Jean le Rond d’Alembert, tried to
solve this problem.! This problem was later applied to astronomical mechanics. It was posed by
Euler for Johann Bernoulli in his letter in 1741.> According to Johann Bernoulli’s letter to Euler
dated on March 15, 1742, this problem is to determine a motion of a rotating tube around a fixed
point and that of a body included in it under the influence of the gravity.

Sit tubus seu canalis (sive gravis sive gravitatis expers) mobilis circa axem fixum, in quo

versetur globus, qui ob gravitatem in tubo sine frictione descendat (et quidem, quod sine

dubio subintelligis, non rotando sed fluendo) simulque tubo motum inducat : quovis

tempore determinare situm tubi et globi in tubo, itemque utriusque celeritatem.?

Johann Bernoulli tried to solve this problem in his succeeding letter but he failed to solve it.*

Johann Bernoulli in reality solved a problem posed by J.S. Kénig in autumn of 1743 when
Kénig studied with Clairaut and Maupertuis.” It is as follows,

Determiner la courbe, que decrit un corps renfermé dans un Tuyeau pendant que le tuyeau

se meut uniformement autour d’un Centre sur un plan horizontal.®

According to Johann Bernoulli’s letter to Euler dated on August 27, 1742, these two problems
seem to be similar but for him, they were quite different. He could solve the problem posed by
Konig but the problem posed by Euler was unsolvable for him. He admitted that there was a great
disparity between them and summarized difference as follows. 1. Konig considers a case where the
gravity does not exist (a motion on a horizontal plane) but Euler poses motion under the influence of
gravity. 2.A tube rotates uniformly in the former case but it does not rotate uniformly in the latter
case. 3. Motion of a body included in a tube depends on the tube in the former case but in the latter
case, a tube is weightless and its motion depends on a heavy body.

Johann Bernoulli published the resolution of this problem twice. First, he wrote it in French as
a supplement in his letter to Euler dated on August 27, 17427 and after that, he rewrote and
published it® in the 4™ volume of his complete works in Latin.’

Euler also posed this problem to Daniel Bernoulli and Clairaut. Daniel Bernoulli frequently
mentioned it in a series of letters to Euler.'’ Especially, in his letter dated on October 20, 1742,'" he
discussed a motion of a heavy straight tube rotating around a fixed point on a horizontal plane and
that of a material point included in it. Next, he solved this problem by using the principle of
conservation of “le momentum du mouvement circulatoire”, which corresponds to the conservation
of angular momentum for us, and published it in his memoir."?

Clairaut also gave an outline of this resolution in his letter to Euler'® and published it in his
memoir.'* Euler himself published his resolution in his memoir.'* D’ Alembert alone discussed this
problem in his book independently.'®

In this article, we will examine Johann Bernoulli’s and Daniel Bernoulli’s methods to solve
this problem in §.2 and 3. In §. 4, 5 and 6, we will summarize Clairaut’s, d’Alembert’s and Euler’s
methods. Finally, we will compare and examine their five methods and discuss their positions in the
18™ century mechanics, which was on the way to constitute the modern physics.

§.2 Motions of a rotating tube including a body — Johann Bernoulli’s analysis.
Johann Bernoulli’s two methods are essentially the same. Then, we will employ the French

version here.
First, he introduces a lemma (Fig.1).
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Fig.1

C

Lemme, Si d’un point C on tire les droites, C4, CB, CD, qui coupent sur PD les parties 4B,
BD, infiniment petites et égales, la difference des angles ACB et BCD c’est a dire
ACB-BCD=(2psds)*/(pp+ss)°...(2-1)
en nommant la constante CP=p, perpendiculaire sur la droite variable P4=s. Cela se
demontre facilement en differentiant ’angle 4CB dans la supposition de ds constant.
We can demonstrate the equation (2-1) as below. By putting zPCA4=6, we obtain z4CB=d6 and by
differentiating an equation cosé=p/o(p’+s’) we obtain —sin@+d6=-1/2¢(p*+s?)>*p2sds. Substituting
pds

p2+s2

Then, by differentiating it once more under the condition of ds=constant, we can obtain

2 psds’®
ZACB - £BCD|=~PZL
(p? +5%)
Next, he solves a problem.
Probleme. Determiner la courbe que décrit un corps renfermé dans un tuyau pendent que
le tuyau se meut uniformément autour d’un centre sur un plan horizontal.
In Fig.2', ABE represents a curve described by a body when a tube CA rotates around a point C. We

sin@ = s/ p*> +s* for this equation and solving it for do, the resolution is d@ =

Fig.2

put CA=x, AB=ds and BH=dy. The body describes an infinitesimal line 4B during an infinitesimal
time. If it were not restricted, it would describe another infinitesimal line BD (=A4B), which is a
prolonged line of AB during a succeeding equal infinitesimal time. But the tube proceeds to CE at
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the end of the second infinitesimal time and #zECB is equal to zBCA. Then, in reality the body

proceeds to a point E. Here, the tube rotates equal angles during two equal infinitesimal durations.
He drops perpendiculars CP and CR to lines BP and ER, respectively and since zCAG is

equal to zCGA and 7zR, because of C4=CG, he obtains the relation that triangle CP4 is similar to

triangle AGB. Then he can obtain p = CP = xcos LACP = xcos ZBAG = xdy/ds . Similarly
he obtains the relation P4 = xdx/ ds , therefore, ‘LA CB - LBCD| = 2dydx/ xx . Furthermore, he

obtains
d(xdy/ds) DF
xdx/ds  ds
,because of RQ/OB=DF/BF and from this,
DF = ds’ -d(xdy/ds).

xdx

Next, he obtains

2
dx.ds :: ds ‘d(xdy / ds) .DE ,

xdx
because triangle HDB is similar to triangle FDE. By considering that ds is constant, he obtains
ds® - d(xd
pE =% 40d)
xdx

Therefore, he gives the relation
DE _ds’ - d(xdy)
EC  xxdy’
From the relation e DCE=eBCA- eDCB, he obtains
xdx’ddy + xdy’ddy = dydx* — dxdy’
and by transforming this relation into

xdxddy — xdy>ddy + 2xdy’ddy = dydsx - (dx* — dv?),

= «ZDCE "

he obtains

ddy N 2dyddy  dx

d&y  dxr - x
By considering dx’ —dy® = ds® — 2dy?, this relation can be transformed into
ddy N 2dyddy _ dx
dy ds’-2dy* x

By integrating it, he obtains

Undy)~-1/21(ds> - 2dy* )= Ix
where # is a constant.
From this relation, he gives

or
xdx

«/nn+xx-‘

By replacing dy with a and dz, which are equal to a radius CM and an infinitesimal element of an arc
MN, respectively, he obtains the relation

dy =
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adx
 Ann+xx .
By integration, he reaches at the final relation

z= l(x+ \/nn+xx).

This equation represents a curve described by the body in the tube.?

dz =

§.3 Motions of a rotating tube including a body — Daniel Bernoulli’s analysis.

§.3-1 Analysis in the letter to Euler in 1742 (Daniel Bernoulli ¥).”!

Daniel Bernoulli, in his letter to Euler dated on December 20, 1742, wrote that “Ew.
Problema generalissimum circa motum globi in tubo hab ich auch solvirt :..” then, we will examine
his solution. '

In Fig.3, when a tube 4D including a small sphere rotates around a point 4 on a horizontal

Fig.3

A

plane, he tries to determine velocities of the tube and the sphere and a curve described by the sphere.
Moveatur tubus AD continens globum F super plano horizontali circa polum A, sitque
determinanda curva, quam describet globus una cum velocitatibus globi et tubi.?
At the first instant, the tube and the sphere are at rest at AD and B, respectively. Then, a force acts on
the tube perpendicularly and after that, no external force acts on it. A curve Bnm represents an arc
described by the point B around the point 4. Now, the tube and the sphere proceed to AE and a point
a, respectively. After an infinitesimal instant df, the tube and the sphere go to AF and a point p,
respectively, and op represents an infinitesimal line described by the sphere during df. He supposes
that after arriving at the point p, the sphere is free from constraint of the tube, then it will describe an
infinitesimal prolonged line pd (=op) during a succeeding time d¢. And the tube will proceed to 4b
without interaction. Here, an arc nm is equal to an arc mg. By drawing an arc ac and setting AB=aq,

Bn=x and Ao=y, he obtains the relation da = 2dxdy/ a®. However, in reality, the tube and the

sphere interact during the second instant dr. To explain this situation, he assumes a force (potentia)
and the sphere is pressed by it against the tube and another force acts on the tube at the point a and
presses it against the tube. As a result, they will meet at a point ¢.* Namely, in reality, the tube and
the sphere will be Acf and the point ¢, respectively after the second infinitesimal instant dt.
Assuming that m stands for a mass of the sphere, M for a mass of the tube, d for a distance from the
point 4 to the center of gravity of the tube, D for a distance from the point 4 to center of oscillation,

dD

he obtains “erit ex mechanicis ac:dc=m:—M % ” From these equations, he obtains
Yy ‘ '
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myy 2dxdy MdD 2dxdy ) i

= . and dc = . . Next, by drawing a line de
myy+MdD  a myy+MdD  a

MdD  2dxdy ydx

myy+MdD a  ads

ac

= dds *° Here, he puts op

perpendicular to a line pc, he obtains ec =

m
as ds. He also obtains hg = —y~2dxdy = —ddx . By assuming that a velocity of the
myy + MdD
point B is ¢ and that of the point » is V and from the equation ddx=dV -dx/V, because of dt=dx/V,
2myd av
and the relation for Ag, he obtain the relation i A ———. And integration of this
myy + MdD V
maa + MdD maa + MdD
relation gives V' = —————¢ . Therefore, he obtains dx = Vdt = ———————-cdt and
myy + MdD myy + MdD
2yd aadsdds
substituting the relation for ec, this relation gives Y 7= > =
(myy + MdD) MdD(maa + MdD)" cedt”
-1 aads’

By integrating this relation, he obtains

b

2m(myy + MdD)*  2MdD(maa + MdD)’ ccdt’
here C is a constant. Representing a absolute velocity of the sphere at the point o by u and supposing
that at the point B, u is equal to ¢ and the sphere does not have any velocity component along the
direction AD, because of df = ds/ u , he obtains

u==c
maa maa

maa+ MdD  MdD ( maa+ MdD )
myy+MdD |

A equation of a curve described by the sphere is given by the relation V :u =dx : ds .
4rv. dy MdD

-m
a dx myy+ MdD

27

Finally, he gives a pressure of the sphere caused by the tube by

§.3-2 Analysis in his “Nouveau Probleme de Mécanique” (Daniel Bernoulli ™)

In this article, Daniel Bernoulli defines a circular motion of a body as le mouvement
circulaire and its velocity along a tangent to the circle as la vitesse circulatoire in §.I. In §.II, he
defines a normal motion caused by circular one as le mouvement centrifuge and its velocity along a
normal direction as la vitesse centrifuge. In §.1II, he defines the product of la vitesse circulatoire, a
mass of the body and a distance from the body to the center of rotation as le momentum du
mouvement circulatoire. This quantity corresponds to angular momentum. In §.IV, he shows that
even a body proceeding on a straight line BD, has le mouvement circulaire and le mouvement
centrifuge, if we consider it from a point 4 (Fig.4)

Fig.4
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Next, he considers a tube as an extended body and he describes that le momentum du
mouvement circulatoire of a tube rotating uniformly around a fixed point is conserved in §.V and
gives its quantity in §.VI. Representing a distance from a fixed point to an given point of the tube by
y, la vitesse circulatoire of the given point by ¥, a distance from the fixed point to an any point of
the tube by x, an infinitesimal element of a distance x by dx and an infinitesimal mass element of the

tube by d¢, he gives le momentum du mouvement circulatoire by ¥/y x j‘xxd/,‘ or MdDV]y.

Moreover, in §.VII, he introduces an important lemma.

Si ’on applique au tuyau mobile autour d’un pomt fixe une puissance dans un point
quelconque dont la distance au point fixe soit = y, cette pulssance produira la méme
acceleration ou le méme retardement sur le tuyau, qu’elle produiroit si le tuyau n’avoit

point de masse & qu’il y eut dans le point, ou la puissance est appliquée, une masse
concentrée, qui fut

=d_DxM28

Yy
He wrote in §.IX, Proposition fondamentale as below.
Si un tuyau droit renfermant un globe librement mobile tourne sur un plan horizontal
autour d’un point fixe, je dis qu’il y aura toujours le méme momentum du mouvement
circulatoire dans le Systeme du tuyau & du globe.
A sphere is included at a point B, when a tube has a position AD (Fig.5). At any instant, the tube and

Fig.5

A

the sphere are at 4i and at a point o, respectively. To determine motions of the tube and the sphere,
he considers them as follows. He assumes that during an infinitesimal time d, the tube proceeds
from Ai to AF and the sphere proceeds from the point o to a point p and during the succeeding
infinitesimal time d¥, if the sphere becomes free from constraint of the tube, the tube and the sphere
will proceed from AF to Ab and the point p to a point d, respectively. Consequently, zF4b is equal to
mAF ,and op and pd are equal and on a straight line. From §.IV and V, he concludes that le
momentum du mouvement circulatoire of the tube and the sphere are conserved respectively during
free motion.
However, in reality, the tube and the sphere interact during the second time df.
...or cette action consiste a reiinir le globe d avec le tuyau Ab, & comme cette action ne
scauroit se faire que perpendiculairement au tuyau, on tirera la petite da perpendiculaire a
Ab, & puis on concevra cette da comme un fil attaché par ses deux bouts au globe & au
tuyau, qui se resserre entierement jusqu’a ce que les deux bouts viennent a se toucher au
point ¢, par 1 on voit qu’au bout du second element de tems la vraie situation du globe
sera en ¢ & celle du tuyau en Acf ;...
The editor of the complete works of Daniel Bernoulli named this method the ‘Daniel Bernoulli-
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d’Alembert’s principle’. By putting Ac=y and supposing that the others have the same meaning as
§.3-1, constriction of a string da has the same effect when the tube is weightless and instead has a

concentrated mass dD/ yyx M at the point a based on the discussion in §.VIII. Therefore, he
obtains the same relation as in §.3-1 2

dc:ac=dD/yyxM :m.
Consequently, he describes that the increase of le momentum du mouvement circulatoire of the
sphere is equal to the decrease of le momentum du mouvement circulatoire of the tube and that le
momentum du mouvement circulatoire of the whole system has the same value at each instant.

Moreover, he proves that the increase of la vitesse circulatoire of a body during dt (=dv) are
represented by

v = w x dt
y
in both cases, where the body moves uniformly (§.XII) or under the influence of central force
(§XIII). Here, V represents la vitesse circulatoire of the body at that instant and y represents a
distance from a fixed point in §.XII and a distance from a center of force in §.XIII. Consequently, in
§.XIV, he demonstrates that when a straight tube including bodies in it rotates around a fixed point,

Vvdt

y
Then, he transfers to Probléme principal in §.XIV.
Soit sur un plan horizontal un tuyau droit AF renfermant tant de Corps qu’on voudra en B,
C &c. & soit d’abord tout le systeme en repos ; qu’on s’imagine ensuite que le tuyau
recoive une impulsion & commence & tourner avec une vitesse donnée autour du point A ;
il est question de determiner 4 chaque moment & a chaque situation du tuyau le
mouvement de toutes les parties du systeme.
In Fig.6, small bodies included in a tube proceed from a point E to a point / and a point D to

the increase of la vitesse circulatoire of each body is

Fig.6

a point g, respectively during an infinitesimal time dt. Eh, Df and Bmn represent arcs and m,
mN...represent masses of each body B, C,...respectively. Moreover, p, pN...represent les vitesses
centrifuges of each body, a, aN...represent distances of each body from a point 4 to each body on
AF and x, xN...represent distances of each body from the point 4 to each body on A4g. In addition, y
standts for an arc Bm, dy stands for an arc mn*° and C stands for la vitesse circulatoire at a point B, ¥/
stands for la vitesse circulatoire at a point m.

Le momentum du mouvement circulatoire of a whole system in the first instant is equal to

MdD + maa+m'a'a + ... c

a
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and when the tube proceeds to ADEG, le momentum du mouvement circulatoire of the whole system
is equal to : - '

MdD + mxx+m'x'x" +... y

a

Because le momentum du mouvement circulatoire of the whole system is conserved, he obtains
[N

_MdD+maa+m'a’a +...

= C.
MdD + mxx+m'x'x" + ...
From §.XIV, he obtains
144
dp = dt
aa
and because of p = dx/dt , he obtains
‘ aapdp = VVxdx.

Substituting the value of V for this equation, he gives

MdD + maa+m'a'a’ +..\’

aapdp = —— CCxdx .

MdD + mxx +m'x'x" +...
In addition, substituting

x'= i’x, x" = EJlx, LA

a a

for the equation above and integrating it, he obtains _
' op = (MdD + maa + m'a'a’ +..)x (xx — aa)
MaadD + (maa +m'a'a’ +..)xx
Les vitesses centrifuges of each body, p, pN... are determined by
, ; ;

"

CcC.

! __ a n __
p=—p,p =—D,..
a a
Then, he obtains
MdD + maa+m'a'a’ +...

= aaC .
MaadD + (maa + m'a’a’ +..)xx

and gives a time, which the tube proceeds from ABCF to ADEG, by
Ifix_
p
Finally, by using two relations ma+mNaN+...=sd and ma’+mNaN'+...= &6s, (s=m+mN... :

0= a distance from the center of gravity to the point 4: e= a distance from the center of oscillation to
the point 4), he transforms the three equations derived above as bellow.

_ (MdD + 56A)x (xx - aa)CC
- MdDaa + s SAxx

N MdD + s5A

\/ (MdDaa + s SAxx )\ xx — aa)

dx+/MdDaa + s 5Axx
c/(MdD + s A Y xx — aa)

Daniel Bernoulli solves these three equations in two extreme cases. The former is that the
mass of the whole bodies can be neglected by comparing with that of the tube®? and the latter is that
conversely mass of the tube is negligible by comparing with that of the whole bodies. Finally, he
finishes his memoir by describing the conservation of vis viva in general.

dy = aadx x

dt =
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§.4 Motions of a rotating tube including a body — Clairaut’s analysis.

Clairaut discusses motion of a tube including a body in his memoir.** In §.XXIII, he poses
the following problem (Fig.7) and solves it.

Fig.7

Soient sur un plan horizontal deux poids P & M, attachez & une ligne inflexible PCM,

mobile autour du centre C; le premier des deux poids étant fixé sur la ligne inflexible, &

I’autre pouvant glisser, on demande la courbe que décrit le corps M lorsqu’on donne une

impulsion quelconque au corps P.
He assumes a system constructed by a weightless rod and two material points places at the both ends
of the rod on a horizontal plane. One of the material points is fixed at one of the ends, the other is
movable on the rod and the rod can rotate around a fixed point on the rod. First in §. XXIII-XXVIII,
he discusses motions of the rod and the movable material point after an impact acted on the fixed
material point. Next in §. XXIX-XXXII, he discusses a case, where the rod rotates on a vertical
plane. In §.XXIII-XXXVII, and in §.XXVIII, he discusses cases, where the rod with two movable
material points rotates on a horizontal plane and on a vertical plane, respectively. In §. XXXIX, he
discusses a case, where the rod with any number of material points rotates on a horizontal plane and
finally, in §.XL, he discusses a case, where the rod with any number of material points moves freely,
not around a fixed point. Here, it is sufficient to examine the case discussed in § XXII-XXVIIL
Clairaut gives two methods to solve this case. Let us examine his methods briefly.

§.4-1. Solution using the principles of la forces accélératrices and the conservation of vis viva
(Clairaut ¥).

He puts CP=1, Pp=dx, CM=y and Rm=dy and represents an infinitesimal duration, which
the rod proceeds from P to p or from M to m, by dt, mass of movable material point M by 1 and
mass of fixed material point P by m, respectively. Then, a velocity of the body M along the direction
CM is equal to dy/dt and its velocity along the direction MR is equal to y-dx/dt.

First, because la force accélératrice of the body M along the direction CM is equal to

y- dx? / dt’, “par le principe général des forces accélératrices” he obtains

(ydxz Jd :ﬂxﬂ 34

dr’ dtdrt
Therefore, he obtains
ddy = ydx® ..(4-1-1).
Next, from the principle of conservation of vis viva, he gives
yydx® +dy® +mdx’ = adt® (4-1-2).°
By differentiating (4-1-2) and substituting (4-1-1), he obtains
(m + yy)ddx +2ydydx =0
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and by integrating, he obtains

(m+ yy)dx = bdt .
By using (4-1-2), he finally obtains '
dx = b .
N+ yy)[0y +m)a/bb-1]

§.4-2. Solution using another principle (Clairaut ®).
Clairaut states the principle used here as below.
ARTICLE IV.
PRICIPE GENERAL ET DIRECT .,
Pour résoudre le Problémes ot il s’agit de déterminer le Mouvement de plusieurs Corps qui
agissent les uns sur les autres, soit par des f Is, soit par des leviers, soit de toute autre
maniére qu’on voudra.
§. XXII.

Je commence par imaginer le systéme dans une situation quelconque, & je trace chacune
des petites droites que les corps parcourent dans un instant ; je place ensuite au bout de ces
petites droites, celles que les mémes corps décriroient I’instant d’aprés s’ils étoient libres :
cela fait, je marque sur les directions suivant lesquelles les fils, les leviers ou autres
instrumens agissent, de petites droites qui doivent exprimer les forces de ces instrumens, &
que je détermine par cette condition que les diagonales des parallelogrammes faits sur ces
petites droites & sur les prolongemnes des cotés parcourus par les corps dans le premier
/instant, soient terminées par des points ol les corps étant supposez dans le second instant, les
fils ou les leviers n’auroient souffert ni extension ni inflexion. Ayant par cette méthode deux
cotés consécutifs quelconques de chacune des courbes décrites par les différens corps qui
composent le systéme donné, la maniére de trouver les équations de ces courbes n’est plus
qu’une affaire de calcul. Ce principe, ainsi que les précédens, sera éclairci dans I’ amcle
suivant.>

Meli named this principle ‘d’ Alembert s principle’.>” Before solvxng this problem he proposes two
lemmas as preparation. :
LEMME 1.
Mm & mn étant deux. droites infiniment petites & égales, prise sur la droite HO ; MC, mC,
'nC trois droites tirées au point fixe C, je dis que si on nomme CM,y;Cm, y+dy ; & I"angle
MCm, dx ; on aura I’angle mCn=dx-2dydx/y.*®*
We can demonstrate this lemma as follows (Fig.8). Because triangle MRm is congruent to

Fig.8

H M m n o

c/

triangle mTn, we get relations MR=y'sin dx.y-dx=mT, mR=y+dy-v(y’-y’dx?).dy+y/2-dx’.dy. And
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because triangle iCm is similar to triangle inT, we obtain the ratio (y+dy) :dy=(ydx-iT) :iT. By
ignoring the infinitesimal smaller than the third order, we get the relation iT(y+2dy)=ydxdy. Finally,
we obtain iT=ydxdy/(y+2dy)=ydxdy-1/y-(1+2dy/y)"'.dxdy(1-2dy/y).dxdy. Therefore, we obtain
mi=mT-iT=ydx-dxdy. . Then, we reach the final relation mmCn=(ydx-dxdy)/[y(1+dy/y)].(ydx-
dxdy)/yx(1-dy/y)=1/y-(ydx-2dxdy+dxdy*/y).dx-2dxdy/y, because of tan amCnrmCn=(ydx-
dxdy)/(y+dy). Here, we ignore the infinitesimal smaller than the third order.

LEMME II.

Les méme chose étant posées, je dis que Cn=y+2dy+ydx>.*

We can demonstrate this lemma as follows. As stated above, triangle MRm is congruent to
triangle mTnm, we obtain nT=mR. Because we can regard that nT is equal to ni, we get the relation
iS=nS-nT. Furthermore, we obtain iS=mS?/CS because triangle CSm is similar to triangle mSi. Next,
we get the relation iS=y*dx*/(y+dy).ydx*(1-dy/y)=ydx*-dx’dy.ydx?, because of mS=nmCSxC=(dx-
dxdy/y)(y+dy)=ydx-dxdy*/y.ydx, here we ignore the infinitesimal smaller than the third order.
Finally, we obtain the relation Cn=CS+iS+in=y-+dy+ydx*+dy=y+2dy+ydx>.

Next, in §. XXVIIL, he solves the problem. In Fig.9, a rod rotates around a point C and

Fig.9

proceeds to PCM from ACB. P and M stand for material points and P is fixed on the rod but M is
movable on the rod. He puts CP=/ and CM=y and supposes that P proceeds to p and M proceeds to
m during the infinitesimal time dr and puts zPCp=zMCm=dx. During the succeeding time d¥, he
supposes that if two bodies does not interact, the body P will describe pr and the body M will
describe mmn, here r is on an arc AP and mn is on the prolonged line Mm. However, in reality, bodies
are constrained by the inflexible rod and he represents this constraint to the body P and to the body
M by impacts pi and mo, respectively. These impacts are perpendicular with respect to the rod mCp
and have opposite directions mutually. In reality, the body M proceeds to a point , which is a vertex
of a parallelogram moun constructed by lines mn and mo and the body P proceed to a point z, where
a prolonged line Cu and the arc AP intersect, at the end of the second infinitesimal time dt.
Consequently, pi is equal to zr.

By supposing that a point ¢ is an intersection of the prolonged line Cm and the arc AP, gr is
equal to 2dxdy/y from the lemmas and because 7 is equal to —ddx, gr is equal to ddx+2dxdy/, ™.
Consequently, nu (=mo) is equal to yddx+2dxdy. Therefore, since according to him, “..par les
principes connus, la force pi ou zr, multipliée par Cp & par la masse P, doit faire la méme quantité
que le produit de la force mo par Cm & par la masse M,”** he gives

mrXCpxP=mo*xCmx*xM...(4-2-1).
And from (4-2-1), he obtains
yyddx+2ydxdy=-mddsx...(4-2-2)
and by integration, he gives
vw+mldx=hdt . (4-2-3).
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where bdt is a integral constant. .
Next, because nu is perpendicular to Cn, Cu is equal to y+2dy+ddy=Cn and from the
lemmas, it is equal to y+2dy+ydx’. Therefore, he obtains :
o ddy=ydx’...(4-2-4)
By solving the equation (4-2-2) for dx and substituting the result for (4-2-3), he gives

. 2
o 2bbydydt2 |
Oy +m)

By integration, he obtains
SR bbdt* -
yw+m

where adf’ is a integral constant. o
Eliminating df by using the equation (4-2-4), he obtains the final equation

dx = &
o+ )y +m)a/ob -1’

which coincides with the final result obtained in §.4-1.

dy’ =- +adt?,

§.5 Motions of a rotating tube including a body — D’Alembert’s analysis.
D’Alembert poses the problem 2 (Fig.10) in Traité de Dynamigque as below.

Fig.10

Supposons qu’'une verge GA fixe en G & située sur un plan horizontal, soit chargée de
deux corps A, D, dont I'un A soit fixement attaché & la verge, I’autre D puisse couler
librement le long de la verge par le moyen d’un anneau ; on demande la vitesse de chacun
de ces corps a instant, & la courbe décrite par le corps D.*' ' '

D’ Alembert also proposes the next lemmas to solve the problem (see Fig.11)

Fig.11
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LEMME VIIL
90. Si deux lignes infiniment petites Pp, Mm, (Fig.23) sont jointes par les lignes finies PM,
pm, & qu’on fasse pr=Pp, & mu=Mm ; je dis 1°. que I’excés de PM sur mu est égal a deux
fois la différence de PM a pm, mois le quarré de ’angle fait entre PM & pm, multiplié par
PM.
2°. Que l’angle de nu avec pm est égal a ’angle de PM avec pm, multiplié par 1+2.(PM-
pm)/PM.*?
He further proposes a corollary as a special case of this lemma (Fig.12).

Fig.12

COLLAIREII.
92. Si les lignes Mm, mu (Fig.24) sont =0, alors Mz-PM=+2pO+PO’/PM, & 1’angle
pMr-PMp=-2pO/PM.PMp*.

Using this corollary, d’Alembert solves the problem. Since Craig C. Fraser explained
d’ Alembert’s method in detail,** we will show it briefly.

D’ Alembert supposes that during the first infinitesimal instant dt, a body A describes an arc
AB and a body D describes a line DE, and that during the second infinitesimal instant dt, if a rod
does not disturb the motions of the two bodies, the body A describes an arc BC (=the arc AB) and
the body D describes a line Ei (=the line DE). However, since the position of the body D changes
with time, the infinitesimal time dt', which the body A describes the arc BC in reality, is different
from dt. He designates the distance which the body A describes uniformly with a velocity at the
point B during dt' as BQ. Similarly, he signifies the distance, which the body D describes uniformly
with a velocity at the point E as Eo. However in reality, since the bodies are restricted each other, at
the end of the dt', he supposes that the body A proceeds to the point C and the body D proceeds to
the point p.

Considering the motion BQ of the body A during the second instant as composed of the
motion BC and CQ, and the motion Eo of the body D during the second instant as composed of the
motion Ep and El (=-op and perpendicular to the rod GB), we can realize that the rod will
equilibrate when the bodies A and D have the unique motions CQ and El, respectively (d’ Alembert’s
principle). Therefore,

A-CQ-GA=D-EI-GE...(5-1)
By putting GA=a, AB=dx, GD=y, FD=ydy/a, FE=dy and CQ=a, and using the relations M-
PM=2pO+pO*PM and (5-1), we obtain
0=2Dydy-dx/(Aa*+Dy?)...(5-2).

Next, by using the relation tpMn-nPMp=(-2pO/PM)nPMp, we obtain an equation of a curve

described by the body D
ddy=dy+ydx*/a*+ody/dx...(5-3).

Finally, d’Alembert puts dx=pdy/a to simplify this differential equation and substitutes it for
(5-3). Furthermore, by integrating it, he obtains the next equation as a curve described by the body
D.



SHIEHIAFIERE

dx(=pdy/a)=adyvD/v(Aa’+Dy*)[2GD(Aa*+Dy?)-1]...(5-4)*
Here, G is an integral constant. The equations given by Clairaut (4-2-2) and (4-2- 4) correspond to
(5-2) and (5-3), respectively.

In the second edition, in Remarque II for the problem II, he dlscusses motion of arod and a
movable body, where the rod rotates on a vertical plane under the influence of gravity. And he
discusses their motion, where the rod rotates with two movable bodies in Remarque IV and with
three movable bodies in Remarque V on a horizontal plane. Moreover, he discusses their motion,
where it rotates with one fixed body and two movable bodies in Remarque VI and with two fixed
bodies and two movable bodies in Remarque VII. We discuss his solution and its relation with
Clairaut’s solution in detail in the preceding article. In a word, although their metaphysical beliefs
are q}llﬁite different, his method is quite the same as Clairaut ®’s method from a physical point of
view.

§.6 Motions of a rotating tube including a body —Euler’s analysis.
Euler discusses motion of a tube including a small body in his memoir E86. Here, we will
describe his method briefly for comparison with Johann Bernoulli’s and Daniel Bernoulli’s methods.

In §.46, a straight tube OC is movable around a fixed point O (see, Fig.13). After a lapse of

Fig.13

time ¢, the tube rotates to a position OF and a body in the tube is on a point P. Euler represents a
mass of the tube by ‘M, moment of inertia of the tube with respect to the point O by Mkk, a mass of
the body by 4, #COE by w, a length of the tube (OC=0E) by f, a distance OP by x and an arc CE by
s.

Here, as a moment of force of the tube; Euler gives

2Mkkdda

. , dr
Next, he draws a perpendicular PQ to a line OC and puts OQ=p, QP=q and he represents a velocity
component of the body along the direction Pr by dp/dt, along the direction Pg by dg/dt.
Consequently, forces acting on the body along two directions can be expressed by 2Addp/dt’,
2A4ddq/df’, respectively. By decomposing these forces along the directions PE and PL, and
expressing p and g by x and w, he gives force along the direction PE by

2 Addx - 2 Axdw*
dt*

and along the direction PL by
- ' 4Adxdw + 2 Axddw

dr?
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In §.48, Euler solves a specific problem. He considers motions of a tube and a small body
include in it after any force having acted on a tube only at the first instant. He represents a pressure
of the body acting on the tube perpendicularly by P and obtains the next three equations.

2 Addx — 2 Axdw*
dt*
4Adxdw + 2 Axddw
dt*

%@ = Px ...(6-3).

By substituting (6-3) for (6-2), he gives a pressure P by
4 A Mkkdxdw

(M + Axx)de*

=0..6-1)

=—P..(62)

EadiNa
Axx + Mkk
Eadt\/g is an integral constant. Substituting this equation for (6-1), multiplying 2dx and

E*d’dr? ) ) .
—————————+bdt”", where bdf is an integral constant. From
A(Axx + Mick)

By eliminating P from (6-2) and (6-3), and integrating it, he obtains dw = , where

integrating it, he obtains dx’ =

this relation, finally he gives

dx+| A\ Axx + Mkk
JbA(Mik + Axx)- E*a?)

dt =

and

Eaadx\ A
(M + Axx)(Ab(Mik + Axx)- E*a®)

Next, Euler proves that in this case, vis viva of the whole system is conserved in §.49 and he
considers the motion of the body in the tube and that of the tube when the tube rotates around a
fixed point on a vertical plane under the influence of gravity in §.50. In §.51, he considers a case,
where M is equal to zero. In §.52-60, he extends §.48 and considers a case where the tube includes
three small bodies or further and he adds the condition that M is equal to zero in §.61-63. Finally, he

discusses the motion of a curved tube including a small body in it under the influence of no external
force in §.68-72.

do =

§.7 Discussions.

We have arranged the characteristics of the resolution methods used by the five scholars in
the table. First, we realize similarities between Johann Bernoulli’s, Clairaut ®’s, d’Alembert’s and
Daniel Bernoulli #’s methods, namely similar lemmas or relations. Johann Bernoulli proposes the

equation (2-1) (see, Fig.1), Daniel Bernoulli proposes the equation da = 2dxdy/ a (see, Fig.3),

Clairaut proposes the equation zmCn=dx-2dydx/y (see, Fig.8). D’Alembert also proposes the
relation m(pMn-PMp)=-2pO/PM.PMp. We can prove that their equations are quite the same as
follows.

First, in Johann Bernoulli’s equation (2-1), by putting p°+s°=)” to use Clairaut’s notation and
pds
p2 42
we can put df=dx. Then we <can transform Johann Bernoulli’s equation

integrating it, we obtain ydy=sds. From §.2, we obtain d@ = and according to Clairaut,
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2 psds?
ACB - BCD = p—2 to Clairaut’s equation mmCn-dx=-2dydx/y. Second, in Fig.3, we can

(pp + 59)

express ndAa=da/Ad=2dxdy/ax 1/Ad. However, according to Clairaut’s notation, we can express Ad
as y+2dy+ddy. Since the quantity dx/a in Daniel Bernoulli’s equation corresponds to dx in Clairaut’s
equation, by representing 2dxdy/ax1/Ad by Clairaut’s notation and ignoring more than the 3 order
infinitesimal, we can prove that mdda=2dydx/y= dx-mzmCn, namely Daniel Bernoulli’s equation
coincides with Clairaut’s. Needless to say, Clairaut’s and d’Alembert’s equations are very much the
same. This is the case for their second equations, namely Cn=y+2dy+ydx* (Clairaut) and Mx-
PM=+2p0+P0O?/PM (d’ Alembert).

These coincidences are based on the fact that their methods are essentially the same,
especially we can realize that d’ Alembert’s and Clairau’s methods are quite the same, by comparing
their equations in their lemmas. In the second infinitesimal instant, they regard the motions of the
tube and of the body as if they move freely without interaction at the first step, and next, by
considering an interaction of the tube and the body and adding this interaction to the free motions,
they search for real motions.

Here, so-called d’Alembert’s principle is used to divide the motion caused by interaction.
Daniel Bernoulli describes generally this principle in a constraint system as below in his article
“Demonstrationes theorematum suorum de oscillationibus corporum filo flexili connexorum et
catenae verticaliter suspensae.”*®

Think that at a given instant the several bodies of the system are freed from one another, and

pay no attention to the motion already acquired, since here we speak only of the acceleration

or the elementary change of motion. Thus when any body changes its position, the system
takes on a configuration different from that it would assume if not freed. Therefore imagine
some mechanical cause to restore the system to its proper configuration, and again I seek the
change of position arising from this restitution in any body. From both changes you will
learn the change of position in the system when not freed, and thence you will obtain the true
acceleration or retardation of each body belonging to the system.*
In this case, a real motion of the tube (or the body) can be expressed as the sum of a free motion of
the tube (or the body) and the constraint motion of the tube (or the body) caused by the body (or the
tube). This method corresponds to the principle Clairaut stated at the beginning of §.4-2 (ARTICLE
IV. PRICIPE GENERAL ET DIRECT). D’ Alembert also proposes the similar principle.’® However
there is still room to discuss whether their principles are quite the same.

Next, we will speak briefly about Johann Bernoulli’s method. Daniel Bernoulli, Clairaut and
d’Alembert consider a case, where the tube sets to move by an external force in the first instant and
later, the motion of the system is changed only by an interaction between the tube and the body
including in it. In addition, Clairaut and d’Alembert consider the motion of the system under the
influence of gravity. Euler considers this case, too. On the contrary, Johann Bernoulli solves only a
case where the tube rotates uniformly. Consequently, this situation requires that the mass of the body
is zero or an external force acts continuously to rotate uniformly and this requirement is quite
different from the three researchers’. Moreover, Johann Bernoulli does not require the masses of the
tube and the body in his solution and he solves the problem by using only geometrical relation.
Then, when he writes that without a restriction of the tube, the body will proceeds to the point D
during the second infinitesimal instant, but in reality since the tube proceeds to the point E, the body
proceeds to the point E, too, at a first glance we tend to conclude that he uses so-called d’ Alembert
principle. However, this conclusion is wrong. As stated below, in d’Alembert’s principle, a motion
of a body, which signifies the product of a mass of the body (m) and the infinitesimal change of a
velocity of the body (dv) or the product of m, dv and a distance from an axis of rotation to the body
(r), must be considered but Johann Bernoulli never use such a quantlty Consequently, his method is
old-fashioned even at that time.

Sometimes Truesdell claims that Daniel Bernoulli’s article (Daniel Bernoulli ) is the first to
declare the conservation of angular momentum.’! Therefore, we will examine Clairaut ®’s and
d’Alembert’s methods, which are equivalent to Daniel Bernoulli ®’s method. Furthermore, we will
examine the relation between Daniel Bernoulli’s two methods. According to Truesdell, in 1703,
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Jacob Bernoulli is the first to treat the conservation of angular momentum implicitly.** In this article,
he discusses the center of oscillation of a pendulum. Here, he supposes a quantity, which
corresponds to the angular momentum of each mass element, and searches for the length of an
equivalent simple pendulum of a composed pendulum by considering the equilibrium of these
quantities. Then he invokes the principle of lever in statics on condition that ‘the motion itself be
regarded as giving rise to forces per unit mass equal to the accelerations reversed.”>® The quantity
considered by him is ‘une branch d’un levier’H‘une vitesse’ H‘un poids ou une puissance’ and he
regards the products as an extension of the principle of lever in statics, namely the products of the
length of a lever and the weight. He declare that

Conjecture 1. The principle of moment of momentum, as an independent law of mechanics

and as a generalization to kinetics of the principle of equilibrium of moments in statics, is

due to James Bernoulli (1686, corrected 1703); in concept, though not in correct statement, it
antedates Newton’s laws (1687).>*
He continues by saying that this principle of conservation is explicitly shown in Daniel Bernoulli ®
and Euler’s article.

... in 1745 both Daniel Bernoulli and Euler put forward a form of the principle in the course

of thcsagr solutions of the problem of a mass point constrained to slide within a rigid, rotating

tube.
First, we will examine the methods of Clairaut ”, d’Alembert and Daniel Bernoulli ?, which precede
that of Daniel Bernoulli ® and Euler.

Clairaut uses the relation (4-2-1) and it is certain that ‘principe connu’ signifies the principle
of lever. However, a quantity considered by him is the products of the force, the length of a lever
and the mass. Since he calls a force ‘la impulsion’ elsewhere, his quantity is proportional to angular
momentum. D’Alembert states that his relation (5-1) signifies equilibrium of the products of the
length of a lever, the mass and the motion, here motion means a velocity for him.*® Therefore, his
products also correspond to angular momentum. However, their treatments are only an extension of
the principle of equilibrium of lever. Furthermore, Daniel Bernoulli uses the relation
ac:dc=m:dD/yy-M in Daniel Bernoulli . Contrary to d’Alembert and Clairaut, since he supposes
that the tube has mass, dD/yy-M (une masse cocentrée) corresponds to a mass, which the mass of the
tube are concentrated at a point 0. And since distances ac and dc mean displacement during an
infinitesimal time, namely velocities, ac:dc=m:dD/yy-M means equality of linear momentum of the
material point and that of the tube. Therefore, by using the Newton’s third law, we can divide the
line ac in this way, as shown by the editor of the complete works of Daniel Bernoulli.”’ Since the
length of the material point is equal to that of une masse cocentrée, the relation of linear momentum
emerges, but not that of angular momentum explicitly. Because in d’Alembert’s and Clairaut’s
resolutions, quantities, which correspond to change in angular momentum during an infinitesimal
time in case there are no restriction, vanish and in Daniel Bernoulli’s resolution, quantities, which
correspond to that of linear momentum, vanish, the integral of this quantity over time is conserved.
However, they do not state the products as a concept.

Next, we will examine the relation between Daniel Bernoulli’s two articles. Daniel Bernoulli
solves the same problem by two methods as shown in §.3-1 and §.3-2. Then for the purpose of
proving that these two methods are quite equivalent, we will demonstrate that the two methods give
the same curve described by the tube. In §.3-1, he gives a relation V:u=dx:ds for the curve described
by the tube. Because this relation is equivalent to another relation ¥2:u”=dx’:ds’, we will substitute
the values of V' and u given by Daniel Bernoulli for the latter relation. Because of

. | ma®*+MdD MdD( ma* + MdDY’ . ma* + MdD
u =c > - > and V° =c¢ —
my~ + MdD my” + MdD

2
> , we obtain
ma ma

V? i = ma*(ma® + MaD): {my* + MdDY — MaD(ma® + MdD)}.

From V2:u’=dx’:ds?, we obtain

dx’ :ds* = ma’ (ma2 + Ma’D): {(my2 + MalD)Z - Ma’D(ma2 + Ma’D)}.
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Substituting ds* = (l dx] +dy? for this proportion and solving it for dx, we obtain
a .

a MdD + ma®
\/my4 + (MdD - ma* )y2 ~a* - MdD
g : N MdD + ma® :
By comparing this equation withdy = a’dx x ma -, we can conclude
\/(MdDa2 +ma2x2Xx2 —az) '
that  both  equations are perfectly the same. And in. the equation

N MdD + s6A
\[ (MdDa + sOAx? Xx )

system has only one body, we obtain the latest equatlon Finally, we can conclude that the both
methods are perfectly the same.
Then, what is the difference between two methods? In his letter to Euler, Daniel Bernoulli
writes as below.
Ich habe auch iiber dergleichen problemata einige compendia, sonderlich ratione vis
acceleratricis globi in tubo, vermittelst welcher ich kann die differentialia 2 ¢ gradus
evitiren und die ganze Solutlon kiirzer machen, die Zeit erlaubt mir aber nicht, solche
nunmehro zu explieiren. :

And in another letter to Euler, he writes as below. :
Ew. Principium conservationis momentorum motus rotatorii abbrevnrt freylich die
problemata de motu corporis in tubo : ich hatte aber solches auch schon observirt, und ist
ein corollarium von der methodo directa, die ich Thnen emmal fiir einen gew1ssen casum
iiberschrieben hatte.>

Therefore, according to him, his latter solution has its novelty in respect that he does not use the

second order differential but conservation of le momentum du mouvement circulatoire.

First, we consider conservation of le momentum du mouvement circulatoire. He uses the
quantity dD/yyHM, which we took up in §.3-2, in both methods. As described above, he derives this
quantity in his preceding article “De Variatione motuum a Percussione excentrica.” According to the
article, a plane ABC on a horizontal plane is rotatable around a point D (Fig.14). A force (potentia)

“dx =

, which Daniel Bernoulli gives in §.3-2, when the

dy = a’dxx

Fig.14

acts on a point B, whose infinitesimal mass is u, and the plane ABC rotates around the point D with
acceleration. He searches for a relation between  and m, which is an infinitesimal mass of a point £
on the plane ABC, when the point E has the same-acceleration (acceleratio) as the point B. The result
is u:m=DE?:DB’.®* Here, we interpret according to the editor of complete works of Daniel
Bernoulli, that he searches for a relation in which the point B and the point E have the same angular
velocity (w). Then, by putting the increase of the point B during an infinitesimal time df (dvz)=DB *
dw, and that of the point E (dvg)=DE *dw, a quantity of the point B, 4 *DB *dvg=u *DB’ *dw is equal
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to a quantity of the point E, m *DE *dve=m *DE’ *dew. This relation means that the change of angular
momentum of the point B with respect to the point D is equal to that of the point £ with respect to
the point D. By expansion, regarding the change of angular momentum of the point B with respect to
the point D as equal to the change of angular momentum of the whole plane 4BC with respect to the
point D, we obtain x *DB’ *dw=I *dw. Here, I signifies momentum of inertia of the plane ABC with
respect to the point D. Therefore, we obtain u=I/DB’, which corresponds to dD/yy*xM described
above.

Then, he states le momentum du mouvement circulatoire, which corresponds to conservation
of angular momentum, in his “Nouveau Probleme de Mécanique” for the first time but already its
idea can be recognized in his “De Variatione motuum a Percussione excentrica.” Therefore, we can
understand that his solution given by his letter includes the concept of conservation of angular
momentum implicitly.

In “Nouveau Probleme de Mécanique”, Daniel Bernoulli proves that le momentum du
mouvement circulatoire of the tube and the body is conserved respectively when they move freely
without constraint. Next, he proves that when considering an interaction, le momentum du
mouvement circulatoire of the whole system is invariable. For this demonstration, instead of the tube
whose mass distributes wholly, he considers an interaction of the body in the tube and the tube
whose mass, dD/yyHM, concentrates in the point o (Fig.5). And he divides the line ad into

ac:dc=m: —D—M . Consequently, multiplying the impulse by a distance from the center of
Yy

rotation 4 to a point which an interaction acts, the increase of le momentum du mouvement

circulatoire of one is naturally equal to the decrease of le momentum du mouvement circulatoire. As

for le momentum du mouvement circulatoire, he states that “c’est a I’imitation de ce qu’on appelle

momentum d’une force qui agit sur un levier.”®' It is that his concept of le momentum du

mouvement circulatoire is an extension of the principle of lever.

Finally we can conclude that the difference between Daniel Bernoulli’s two methods is that
he does not use the second difference in his “Nouveau Probleme de Mécanique.” Namely, his
method stated in his letter uses the second difference and geometrical relations. The same thing can
be said of Johann Bernoulli’s, d’Alembert’s and Clairaut ®’s methods in §.4-2. These methods need
a special technique in a specific problem and it is difficult to set equations of motion generally in
any situation. On the contrary, the method in “Nouveau Probleme de Mécanique” does not need
such a special technique and we can obtain equations of motion easily, just like Clairaut ®’s method.
However, there exists the essential difference between giving a name as a notion and using
unconsciously, though Clairaut makes an excuse!®

This principle of conservation is pointed out by Euler and he further generalizes this principle.
Truesdell states that :

The method used by Euler is the same as James Bernoulli’s, but it is clearly explained, and Euler
gives (5) explicitly in the special case of plane motion about a fixed axis (L=Ia); his alleged proof is
no more than an assertion of the extended law of the lever.

Here, the equation (5) signifies dH/dt=L and H is angular momentum (or ‘the moment of
momentum’) and L is ‘the total torque exerted by the external forces.’

When a body rotating around a point O changes its motion by an external force
(Fig.15), Euler

Fig.15
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searches its motion by equating the sum of moment of force gained by each element of the body to
moment of force given by an external force to the body. He searches for a force that acts on a point
A, whose direction Aa is perpendicular to line OA and then multiplies this force by distance OA and
sums up the products over the body. He names the final quantity the sum of moment of force
(omnium harum virium summa momentorum ad axem). Then, by equating this sum to moment of
force caused by an external force, he derives the equation of a rotating body.® It is certain that his
starting point is the principle of lever, because he considers moment of force, which is equal to the
products of the length of a lever and force. However, the establishment of the principle of
conservation of angular momentum from the principle of lever in statics is not simple. In discussing
the history for searching the length of an equivalent simple pendulum of a composed pendulum,
Christiane Vilain makes clear the process of development from Jacob Bernoulli’s quantity, which is
the products of the length of a lever, the velocity and the weight derived from the principle of lever
in statics, via Johann Bernoulli’s and Hermann’s quantity, to Euler’s quantity, which is moment of
force with no relation to a lever.** Therefore, Truesdell’s evaluation to Euler is too simple.

Furthermore, Euler gives a general equation for a rotating body in the two dimensions
2Mkkddw/dt*=Px (which corresponds to dH/dt=L). And Euler, contrary to Daniel Bernoulli, uses a
concept of moment of inertia (momentum inertiae corporis=Mkk). Furthermore, he demonstrates
that in this special case, namely the motion of a rotating tube including a material point, angular
momentum (momentum motus gyratorii) of the system is coserved.*®

From another point of view, we can divide their methods into two groups; one includes Euler
and d’Alembert, the other includes Daniel Bernoulli, Clairaut. Euler declares at the beginning of his
article treating a body in a rotating tube that:
Quod negotium cum suscepissem, praecipue in hoc elaboravi, ut huiusmodi problematum
solutiones ex primis mechanicae principiis investigarem, neque ad has principiis inde
demum derivatis, cuiusmodi est conservatio virium virarum, uterer ; non quasi huius
principii veritatem in dubium vocarem, sed potius ut consensu mearum solutionum cum
iis, quae ex principio isto sint deductae, eius veritas etiam illis, qui adhuc de eo dubitant,
plenissime confirmaretur. Tum vero saepe occurrunt casus, quibus hoc principium alias
utilissimum, omni usu ad solutionem obtinendam caret, eum contra prima mechanicae
principia, si recte adhibeantur, semper ad solutionem perducere debeant.®

Namely, he uses the primary principles, not conservation of vis viva. He also writes in another article

that: o :

~...I’une [méthode], tirée des primiers principes de la Mécanique, par le moyen desquels on
trouve, a chaque instant, le changement tant dans la vitesse que dans la direction, causé
par les forces sollicitantes....Mais la premiere méthode, quoiqu’elle soit beaucoup plus
difficile que I’autre [fondée sur des principes dérivatifs],. Semble pourtant étre plus
- naturelle, parce qu’elle montre a chaque instant, non seulement 1’état du mouvement, mais

encore les véritables causes de tous les changements qui arrivent successivement.5’

Next we will states his primary .principles used in §.6 of this memoir briefly. In Fig.11, he sets

0Q=p, OP=q and signifies a force acting on the body P along the direction OQ as Fog, a force

acting along the direction QP as Fpp and firstly he gives the equations of motion for the body P by

Fop=24 +ddp/df’, Fop=24 *ddq/df’

and by signifying moment of inertia with respect to the point O as Mkk, a rotational angle around the

point O as w and a moment of force acting on the tube as N, secondly he gives the equation of

rotation of the tube by

N=2Mkk -ddew/df.

It is these equations that are used at present time to solve such a problem

D’ Alembert writes as below.

L’élégance dans la solution d’un Probléme, consistant surtout 4 n’y employer que des
principes directs & en trés-petit nombre, on ne sera pas surpris que I’uniformité qui regne
dans toutes mes solutions, & que j’ai eue principalement en vile, les rende quelquefois un
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peu plus longues, que si je les avois déduites de principes moins directs.*®
For Euler and d’ Alembert, mechanics must be deduced from primary principles, though their

system are quite different. Clairaut, on the other hand, uses various methods to solve the problem.
And as for Daniel Bernoulli, the editor of the complete works of Daniel Bernoulli writes that

While Daniel Bernoulli used this principle for solving various problems, d’Alembert

stated it as the universal principle of dynamics able to replace even Newton’s notion of

force and his laws of motion. ...here it suffices to say that Bernoulli never made such a

claim.%®

Finally, we can place their methods as follows. Johann Bernoulli’s method treats a special
case of a rotating tube including a body in it geometrically. We can not find a mass and motion of
the body in it. Next, Daniel Bernoulli ’s method, Clairaut s method and d’ Alembert’s method use
the second differential and geometrical relations, which are based on the 17" century tradition. In
addition, the concept of une masse concetrée introduced by Daniel Bernoulli, is his device to treat an
extended body on the basis of the tradition of Huygens’ origin. Daniel Bernoulli ®’s method , which
is based on this tradition derived from the 17" century, introduces conservation of angular
momentum and is new one. And Clairaut ®’s method is composed by a skillful combination of
conservation of vis viva and gdf=dv in the 18" century fashion. However, their methods are
proposed to solve given problems skillfully under the specific conditions and are not the primary
principles applicable to all cases. On the contrary, the method given by Euler in §.6 treats not only
the special case, namely motion of a tube including a material point but also by introducing a
concept of moment of inertia, a general method to solve motion of rigid body.
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Solution Mass of the tube Angular momentum Primary Note
(rod) principle
Joh. Bernoulli || Geometrical relation X X
Clairaut ¥ f dt=dv & X X
Conservation of vis
viva
Clairaut ¥ Geometrical relation Length of the lever X force X X
& d’Alembert’s X mass Equivalent
principle
D’ Alembert Geometrical relation Length of the lever X mass X O
& d’Alembert’s X motion" Equivalent
principle
D. Bernoulli ¥ | Geometrical relation O ac :dc=m :dD/yy ‘M X
& d’Alembert’s (une masse Equivalent
principle concentrée)
D. Bernoulli ¥ | Conservation of O m.m.c.?=conservation of mvr X
angular momentum (une masse (imitation of momentum of
concentrée) force)
Euler F=ma & N=I-do/dt O(moment of Px=2Mkk - ddw/dt*® @)
inertia)

(1) motion=velocity of a mass(T.D.p.73).
(2) momentum du mouvement circulatoire.
(3) Left side...“omnium harum virium summa momentorum ad axem”;

MKK...“momentum inertiae corporis”.

*. D’Arcy also solves the same problem by using the conservation of angular momentum (the conservation of areal
velocity) and the conservation of vis viva (1746).




